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Abstract

Adinkras are diagrams that describe many useful supermultiplets in
D = 1 dimensions. We show that the topology of the Adinkra is uniquely
determined by a doubly even code. Conversely, every doubly even code
produces a possible topology of an Adinkra. A computation of doubly
even codes results in an enumeration of these Adinkra topologies up to
N = 28, and for minimal supermultiplets, up to N = 32.

1 Introduction, review and synopsis

Although many supersymmetric theories have been known since the 1970s,
there is still no overarching classification of supermultiplets, even in one
dimension (time). In fact, supersymmetry in one dimension has been the
subject of several investigations, for instance the development of the
GR(d,N) algebras [1–3], the development of Adinkras [4], and to other
efforts [5–14].

An Adinkra is a directed graph with various colorings and other markings
on vertices and edges, which in a pictoral way encode all details of the super-
symmety transformations on the component fields within a supermultiplet
in one dimension [4]. The main purpose of the present work is to determine
the kinds of graphs (i.e., the topology) that can be used for Adinkras.

The class of supermultiplets described by Adinkras is wide enough to con-
tain many noteworthy superfields. [4, 15] This paper will clarify the condi-
tions for a supermultiplet in one dimension to be described using an Adinkra.
Beyond this, by showing that this class is large, we thereby show that the
class of supermultiplets is also large, and thus establish that the classifi-
cation problem of supersymmetry in one dimension is much more intricate
than it might appear at first. We also thereby add many new supermulti-
plets to the literature that were previously unknown, and it is possible that
some of these newly discovered supermultiplets may be useful or interesting
in their own rights.

Finally, we hope that classifying Adinkras may help one better understand
the conditions under which a superfield has an off-shell description. Subject
to a particular set of assumptions about dynamics, Siegel and Roček [16]
had previously shown that not all supermultiplets have off-shell descriptions.
On the other hand, superfields described by Adinkras are off-shell supermul-
tiplets. Therefore, understanding the range of what Adinkras can describe
may shed some light on the question of which supermultiplets admit an
off-shell description.
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1.1 Adinkras

In one dimension, with N supersymmetry generators Q1, . . . , QN , the
supersymmetry algebra is

{QI , QJ} = 2iδIJ∂τ , (1.1)

where ∂τ is the derivative in the time direction.

An Adinkra is a finite directed graph, with every vertex colored either
white or black, and with every edge colored one of N colors (each color
corresponds to one of the supersymmetries QI), and each edge drawn with
either a solid or a dashed line. The vertices correspond to the component
fields (black for fermions, white for bosons) and the edges correspond to
the action of each of the QI , in a way that is reminiscent of the Cayley
diagram of a finitely generated group, or even more analogously, the Schreier
diagram of the set of cosets of a subgroup. Details of Adinkras and how they
correspond to supermultiplets can be found in [4, 17]. The classification of
Adinkras naturally falls into four steps:

(1) Determine which topologies are possible (the topology of an Adinkra
is the underlying graph of vertices and edges without colorings, as, for
instance, in [17]).

(2) Determine the ways in which vertices and edges may be colored.
The topology of the Adinkra, together with the colorings of vertices
and edges, will be called the chromotopology of the Adinkra. It is
chromotopologies that are classified in this paper.

(3) Determine the ways in which edges may be chosen as dashed or solid.
This is closely related to the well-known theory of Clifford algebras,
and will be studied in a future effort.

(4) Determine the ways in which arrows may be directed along each edge.
This issue is addressed in [17], and shown to be equivalent to the
question of “hanging” the graph on a few sinks. Alternately, we can
start with an Adinkra where all arrows go from bosons to fermions,
then perform a sequence of vertex raises to arrive at other choices of
arrow directions.

As it happens, it is convenient to do 1 and 2 together; that is, to clas-
sify chromotopologies. Herein, we show that the classification of Adinkra
chromotopologies is equivalent to another interesting question from coding
theory: the classification of doubly even codes. Much work has already been
done in this area [18–20], and the work described in this paper goes even
further in developing this classification; see Appendix B.



1912 CHARLES F. DORAN ET AL.

We emphasize that we focus here on the representation theory, not the
dynamics. This is natural, as we need to first know the full palette of super-
symmetric representations before discussing the properties of the dynamics
in theories built upon such representations. For instance, presupposing a
standard, uncoupled Lagrangian for the supermultiplets that we intend to
classify would necessarily limit the possibilities; there do exist supermulti-
plets which can only have interactive Lagrangians [21,22]. Herein, we defer
the task of finding Lagrangians involving the supermultiplets considered in
this paper. In [23, 24], we have in fact started on such studies, and, using
Adinkras, have constructed supersymmetric Lagrangians for some of the
supermultiplets that are also discussed herein.

In units where � = 1 = c, all physical quantities may have at most units
of mass, the exponent of which is called the engineering dimension and is an
essential element of physics analysis in general. The engineering dimension
of a field φ(τ) will be written [φ]; for more details, see Refs. [17, 25].

1.2 Main result

Our main result about the chromotopology types of Adinkras and the corre-
sponding supermultiplets, up to direct sums, may be summarized as follows:

We define the function:

κ(N) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 for N < 4,
1 for N = 4, 5,
2 for N = 6,
3 for N = 7,
4 + κ(N−8) for N ≥ 8, recursively.

(1.2)

(1) Every Adinkra can be separated into its connected components. (The
supermultiplet corresponding to such an Adinkra breaks up into a
direct sum of other supermultiplets, each of which corresponds to one
of the connected components of the Adinkra).

(2) There is a one-to-one correspondence between possible chromotopolo-
gies of connected Adinkras and doubly even codes of length N .

(a) Each connected chromotopology has, associated to it, a doubly even
code of length N and dimension k ≤ κ(N) that records which paths
connect a vertex to itself.

(b) The chromotopology is then the quotient of the colored N -dimen-
sional cube by this code. (The colored N -cube is the set of vertices
and edges of the N -dimensional cube [0, 1]N , with colors on the
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edges determined by which axis it is parallel to, and colors of ver-
tices according to the number, modulo 2, of coordinates that are
1).

(c) This quotient can be viewed as an iterated k-fold Z2-quotient.
(d) These chromotopologies really do come from supermultiplets in

D = 1 dimension, and if the arrows are chosen properly
(one-hooked) we can arrange it so that it is easy to see that different
codes give rise to different supermultiplets.

(e) Permuting the columns of a code corresponds to permuting the
colors of the chromotopology, which in turn describes R-symmetries
of the supermultiplet.

(f) There are an enormous multitude of distinct doubly-even codes
for N ≤ 32, even when counting permutation equivalent codes as
the same code. Thus, there is an enormous multitude of Adinkra
chromotopologies.

This paper is organized as follows: Section 2 is a brief introduction to
codes, and Section 3 provides a review of Adinkras and their relationship
with supermultiplets. The first major result, in Section 4, is that each
Adinkra chromotopology gives rise to a doubly even code. It will be con-
venient to provide a few classes of examples of doubly even codes for our
discussions, and to give a sense for how many doubly even codes there are,
so this is done in Section 5. We then turn to the second major result: that
every doubly even code actually arises as the code for an Adinkra chromo-
topology for a supermultiplet. This is done in Sections 6 and 7. Sections 8
and 9 discuss some consequences and directions for further research.

2 Codes

We begin with a brief introduction to the theory of codes. For a more
thorough introduction to the subject, see [18–20].

We think of {0, 1} as a group with the operation �, which is addition
modulo 2, i.e., the group Z2. For the purposes of this paper, a code of length
N means a subgroup of {0, 1}N .1 Although the standard notation for an
element of a cartesian product is (x1, x2, . . . , xN ), in practice we frequently
abandon the parentheses and the commas, so that the element (0, 1, 1, 0, 1)
may be written more succinctly as the codeword 01101. The components
of such an N -tuple are called bits, and the N -tuple is called a word. This
word is called a codeword if it is in the code.

1In the coding literature, there are sometimes other more general definitions of codes.
What we have described is a linear binary block code of length N .
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Now, Z2 is not only a group; it is also a field, so {0, 1}N can be viewed
as a vector space over {0, 1}. All the concepts of linear algebra then apply,
but with R replaced with Z2. Elements of {0, 1}N may be thought of as
vectors, with vector addition the operation � of bitwise addition modulo 2.
Codes are then linear subspaces of {0, 1}N . Every code has a basis, called
a generating set, g1, . . . , gk, so that every codeword can be written uniquely
as a sum

k∑

i=1

xigi, (2.1)

where the coefficients x1, . . . , xk are each either 0 or 1. The number k is the
same for every generating set for a given code, and is called the dimension
of the code. It is common to say we have an [N, k] linear code when N is the
length of the codewords and k is the dimension. It is traditional to denote
a generating set as an k×N matrix, where each row is an element of the
generating set.

If v ∈ {0, 1}N , we define the weight of v, written wt(v), to be the number
of 1s in v. For instance, the weight of 01101 is wt(01101) = 3.

A code is called even if every codeword in the code has even weight. It is
called doubly even if every codeword in the code has weight divisible by 4.
Examples of doubly even codes are given in Section 5.1 below.

If v and w are in {0, 1}N , then v & w is defined to be the “bitwise and”
of v and w: the ith bit of v & w is 1 if and only if the ith bit of v and the
ith bit of w are both 1. A basic fact in {0, 1}N is

wt(v � w) = wt(v) + wt(w) − 2 wt(v & w). (2.2)

There is a standard inner product. If we write v and w in {0, 1}N as
(v1, . . . , vN ) and (w1, . . . , wN ), then

〈v, w〉 ≡
N∑

i=1

viwi (mod 2). (2.3)

We call v and w orthogonal if 〈v, w〉 = 0. This occurs whenever there are an
even number of bit positions where both v and w are 1. Note that 〈v, v〉 ≡
wt(v) (mod 2), and thus, when wt(v) is even, v is orthogonal to itself. Also
note that 〈v, w〉 ≡ wt(v & w) (mod 2). One important consequence for us is
that if wt(v) and wt(w) are multiples of 4, then (2.2) implies that wt(v � w)
is a multiple of 4 if and only if v and w are orthogonal.
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3 Supersymmetric representations and adinkras

The N -extended supersymmetry algebra without central charges in one
dimension is generated by the time-derivative, ∂τ , and theN supersymmetry
generators, Q1, . . . , QN , satisfying the following supersymmetry relations:

{QI , QJ} = 2 i δIJ ∂τ , [∂τ , QI ] = 0, I, J = 1, . . . , N. (3.1)

In this section, we determine some essential facts about the transformation
rules of these operators on fields for which it is possible to maintain the
physically motivated concept of engineering dimension. We note that since
the time-derivative has engineering dimension [∂τ ] = 1, the supersymmetry
relations (3.1) imply that the engineering dimension of the supersymmetry
generators is [QI ] = 1

2 .

3.1 Supermultiplets as representations of supersymmetry

A real supermultiplet M is a real, finite-dimensional, linear representation
of the algebra (3.1), in the following sense: It is spanned by a basis of real
bosonic and fermionic component fields, φ1(τ), . . . , φm(τ) and ψ1(τ), . . . ,
ψm(τ), respectively; each component field is a function of time, τ . The
supersymmetry transformations, generated by the Hermitian operators
Q1, . . . , QN , act linearly on M while satisfying equations (3.1). The super-
multiplet is off-shell if no differential equation is imposed on it2 . The number
of bosons as fermions is then the same, guaranteed by supersymmetry.

3.2 Building supermultiplets from Adinkras

The authors of [4, 17, 23] introduced and then studied Adinkras, diagrams
that encode the transformation rules of the component fields under the
action of the supersymmetry generators Q1, . . . , QN .

Supermultiplets that can be described by Adinkras have a collection of
bosonic and fermionic component fields and a collection of supersymmetry

2Logically, it is possible for some — but not all — component fields to become subject
to a differential equation. This does not violate the literal definition of the off-shell super-
multiplet. However, it does obstruct standard methods of quantization, which is our
eventual purpose for keeping supermultiplets off-shell. For an example in 4-dimensional
supersymmetry; see [15].
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generators Q1, . . . , QN , so that: (1) Given a bosonic field φ and a supersym-
metry generator QI , the transformation rule for QI of φ is of the form

either QIφ = ±ψ, (3.2)

or QIφ = ± ∂τψ, (3.3)

for some fermionic field ψ. (2) Given instead a fermionic field η and a
supersymmetry generator QI , the transformation rule of QI on η is of the
form

either QIη = ± iB, (3.4)

or QIη = ± i ∂τB, (3.5)

for some bosonic field B. In particular, these supersymmetry generators act
linearly using first-order differential operators. Furthermore, the supersym-
metry algebra requires that

QIφ = ±ψ ⇐⇒ QIψ = ± i ∂τφ, (3.6)

and

QIφ = ± ∂τψ ⇐⇒ QIψ = ± iφ, (3.7)

and where the ± signs are correlated to preserve equations (3.1).

More generally, suppose we label the bosons φ1, . . . , φm and the fermions
ψ1, . . . , ψm. Choose an integer I with 1 ≤ I ≤ N , and an integer A with
1 ≤ A ≤ m. For each such pair of integers, we consider the transformation
rules for QI on the boson φA, and we might expect that these will be of the
form

QI φA(τ) = c ∂λτ ψB(τ), (3.8)

where c = ±1, λ = 0 or 1, and B is an integer with 1 ≤ B ≤ m, so that ψB
is some fermion; each of c, λ,B will, in general, depend on I and A. Note
that

λ = [φA] − [ψB] +
1
2
, (3.9)



CODES AND SUPERSYMMETRY IN ONE DIMENSION 1917

Table 1: The correspondences between the Adinkra components and super-
symmetry transformation formulae: vertices ⇐⇒ component fields; ver-
tex color ⇐⇒ fermion/boson; edge color/index ⇐⇒ QI ; edge dashed ⇐⇒
c = −1; and orientation ⇐⇒ placement of ∂τ . They apply to all φA, ψB
within a supermultiplet and all QI -transformations amongst them.

Adinkra Q-action Adinkra Q-action

QI

[
ψB
φA

]

=
[
iφ̇A
ψB

]

QI

[
ψB
φA

]

=
[−iφ̇A
−ψB

]

QI

[
φA
ψB

]

=
[
ψ̇B
iφA

]

QI

[
φA
ψB

]

=
[−ψ̇B
−iφA

]

The edges are here labeled by the variable index I; for fixed I, they are drawn in the Ith color.

for φA and ψB to have a definite engineering dimension — provided the
transformation rules had only dimensionless constants as we assume through-
out. For each such transformation rule, we will get a corresponding
transformation rule for the QI on the fermion ψB(τ) that looks like this:

QI ψB(τ) =
i
c
∂1−λ
τ φA(τ). (3.10)

Equations (3.8)–(3.10) constitute all of the transformation rules on the
bosons and fermions, respectively.

Definition 3.1. A supermultiplet, M , is adinkraic if all of its supersym-
metric transformation rules are of the form (3.8) and (3.10).

For each adinkraic supermultiplet, its Adinkra, AM , is a directed graph,
consisting of a set of vertices, V , a set of edges, E, a coloring C of the edges,
a set of their orientations, O, and a labeling D of each edge corresponding
to whether or not it is dashed.

Each component field of M is represented by a vertex in AM : white for
bosonic fields and black for fermionic ones, thus equipartitioning the vertex
set V →W . Every transformation rule of the form (3.8) is depicted by an
edge connecting the vertex corresponding to φA to the vertex corresponding
to ψB, and color the edge with the Ith color. We use a dashed edge if c = −1,
and oriented it from φA to ψB if λ = 0 and the other way around if λ = 1.

Table 1 illustrates the four possibilities for an edge.

We can also use the Adinkra to reconstruct the adinkraic supermultiplet,
since the Adinkra contains all the information necessary to write down the












































































































